Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Synthesis of gem-difluoromethylenated analogues of anamarine

Jing Lin^a, Xiao-Long Qiu^b, Feng-Ling Qing^{a,b,*}

^a College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China ^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

ARTICLE INFO

ABSTRACT

Article history: Received 5 January 2010 Received in revised form 16 February 2010 Accepted 19 February 2010 Available online 26 February 2010

Keywords: Anamarine α,β-Unsaturated-δ-lactone gem-Difluoromethylenated analogues Indium-mediated

1. Introduction

Isolated from the flowers and leaves of a Peruvian *Hyptis* species by Valverde and co-workers in 1979 [1,2], (+)-anamarine **1** has a structure featuring *R*-configuration in the 5,6-dihydro-2H-pyran-2-one ring and L-gluco arrangement in the C6-side chain (Fig. 1). In the past years, (+)-anamarine **1** along with other members of this α , β -unsaturated lactone class of natural products [3,4] including spicigerolide **2**, hyptolide **3** and synrotolide **4** attracted considerably more attention from organic chemist, medicinal chemist and biological chemist in view of the fact that all of these compounds possessed a range of pharmacological properties, such as cytotoxicity against human tumor cells, antimicrobial or antifungal activities [5,6]. Thus, pharmacological properties of these types make these compounds and their analogues interesting synthetic goals.

So far, several groups have reported the synthesis of the anamarine and its *epi*-isomers based on two main synthetic routes (Scheme 1). One route involved the Wittig reaction between premodified phosphonium salt **5** and protected aldehyde **6** to afford the *Z*-olefin **7**, which was converted to anamarine or its *epi*-isomers via a series of transformations of protecting groups and hv-irradiated isomerization of *Z*-double bond [7–10]. Another route utilized the ring-closing metathesis (RCM) reaction of triene compounds **8** to construct 5,6-dihydro-2H-pyran-2-one ring [11–

Practical synthesis of two *gem*-difluoromethylenated analogues of anamarine was described. The important synthetic steps included the preparation of the key intermediates **20–21** through the indiummediated *gem*-difluoropropargylation of aldehyde **18** with the fluorine-containing building block **19** and efficient construction of α , β -unsaturated- δ -lactone scaffold via BAIB/TEMPO procedure. © 2010 Elsevier B.V. All rights reserved.

> 14]. Due to inconvenience of hv irradiation reaction and expensive Grubbs catalyst for RCM reaction, in our opinion new synthetic method for anamarine and its analogues should be developed. Additionally, structure-activity relationship (SAR) has demonstrated that the α , β -unsaturated- δ -lactone scaffold of anamarine and its epi-isomers played a key role for their bioactivities because such structure unit was an excellent potential Michael acceptor for nucleophilic amino acid residues of the natural receptors [15–17]. In view of the similarity in size between fluorine atom and hydrogen atom and the strong electron-withdrawing property of gem-difluoromethylene group (CF₂) [18,19], we intended to introduce a CF₂ group to α , β -unsaturated- δ -lactone of anamarine at the γ -position. We envisioned that the resultant γ , γ -difluoromethylenylated- α , β -unsaturated anamarine analogues would be much more electron deficient, making it a better candidate to enhance the reactivity of the conjugated double bond as an acceptor with minimum steric change. Herein we would like to describe the total synthesis of gem-difluoromethylenated analogues of anamarine using novel synthetic strategy.

2. Results and discussion

Our retrosynthetic analysis was outlined in Scheme 2. We proposed that γ , γ -*gem*-difluoromethylenated anamarine analogues **9–10** could be afforded from the intermediate **A** by means of oxidation–cyclization procedure, which was developed by Forsyth group [20] and have been successfully utilized to synthesize a series of *gem*-difluoromethylenated α , β -unsaturated- δ -lactone derivatives in our group [21,22]. Homopropargylation of aldehyde **C** with fluorine-containing building block **B** would yield compound **A**. Aldehyde **C** would be prepared via reduction of ester **D** and

^{*} Corresponding author at: Shanghai Institute of Organic Chemistry, Key Laboratory of Organofluorine Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China. Fax: +86 21 64166128.

E-mail address: flq@mail.sioc.ac.cn (F.-L. Qing).

^{0022-1139/\$ –} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2010.02.010

Scheme 1. Reported synthetic strategy for anamarine and its epi-analogues.

Fig. 1. The anamarine-type α , β -unsaturated lactones.

subsequent oxidation. The ester **D** could be obtained by means of WHE reaction between $(EtO)_2P(O)CH_2CO_2Et$ and aldehyde **E**, which, in turn, would be produced from readily prepared aldehyde **11** via Grigard reaction followed by oxidative cleavage.

Based on our retrosynthetic analysis, our synthesis embarked from the aldehyde **11** (Scheme 3), which was prepared from commercially available p-glucono- δ -lactone in 3 steps according to reported procedure [23,24]. The nucleophilic addition of aldehyde **11** with MeMgBr gave alcohol **12** as a mixture of two diastereomers with *anti*-isomer as the major product [25] and two diastereoisomers could not be separated by flash chromatography. Silylation of alcohol **12** with TBSOTf/2,6-lutidine produced the compound **13** in good yield. When **13** was treated with periodic acid hydrate (H₅IO₆) [26], the selective hydrolysis of terminal isopropylidene acetal in **13** and *in situ* glycol cleavage proceeded smoothly in one pot to give aldehyde **14**, which was used in next step without purification. Then, treatment of **14** with ethyl 2-(diethoxyphosphoryl)acetate in the presence of NaH afforded ester **15** in 70% yields over two steps. Reduction of ester **15** with DIBAL-H smoothly provided the alcohols **16** and **17** in good yield. Fortunately, two diastereomers **16** and **17** could be readily separated by silica gel chromatography.

Oxidation of the alcohol 16 with Dess-Martin oxidant gave the desired aldehyde **18** in almost quantitative yield (Scheme 4). At this point, we focused our efforts on the homopropargylation of aldehvde **18** with fluorine-containing building block **19** [21]. Initially, the reaction conditions developed by Hammond group [27] were used. However, we found that treatment of aldehyde 18 with (4-bromo-4,4-difluorobut-2-ynyloxy)(tert-butyl)dimethylsilane **19** with THF-H₂O (1:4, v/v) as solvent in the presence of indium at room temperature gave the expected product 20 in low yield along with its diastereomer **21** (*anti/syn* = 1.6:1, determined by ¹⁹F NMR before column chromatography). Diastereoisomer 20 and 21 could be separated by silica gel chromatography. After further optimization, we were pleased to find that substitution of DMF-H₂O (2:1, v/v) for THF-H₂O (1:4, v/v) as solvent would significantly improve the yield of alcohols 20-21 and anti-alcohol 20 was still the major diastereoisomer [28,29].

With the key intermediates **20–21** in hand, the synthesis of the target molecules were performed as outlined in Scheme 5. Initial attempts to hydrogenate the triple bond of in **20** and **21** to the *cis* double bond using Lindlar catalyst/quinoline system failed. Fortunately, the selective hydrogenation progressed well utilizing Pd–BaSO₄/–quinoline system [30] and compound **22** and **23** was provided in 96% and 93% yields, respectively. Selective deprotection of the primary TBS group in **22** and **23** with D-camphor-10-

Scheme 2. Retrosynthetic analysis of γ , γ -gem-difluoromethylenated anamarine analogues 9–10.

sulfonic acid (CSA) gave cyclization precursor **24** and **25** in 80% and 85% yield, respectively. Delightfully, treatment of compound **24** and **25** with 0.2 equiv. of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)/3.0 equiv. of [bis(acetoxy)iodo]benzene (BAIB) in dichloromethane at room temperature smoothly afforded cycliza-

tion compound **26** and **27** in 86% and 85% yield, respectively. Using O'Doherty reported reaction condition [14], attempts to removal of all protecting groups by heating the lactones **26** and **27** in 10% aqeous HCl/THF for 10 min at 65 °C failed. Gratifyingly, treatment of compounds **26** and **27** with 6 M aqueous HCl/THF (1:1, v/v)

Scheme 5.

followed by direct acetylation with Ac₂O/DMAP/pyridine successfully afforded out target molecules ${\bf 9}$ and ${\bf 10}$ in 78% and 87% yields, respectively.

3. Conclusions

We have accomplished the total synthesis of *gem*-difluoromethylenated analogues of anamarine **9** and **10** in a straightforward fashion. Our synthesis featured practical preparation of the key intermediates **20–21** through the indium-mediated *gem*difluoropropargylation of aldehyde **18** with the fluorine-containing building block **19** and efficient construction of α , β -unsaturated- δ -lactone scaffold via BAIB/TEMPO procedure. In our opinion, herein reported synthetic route provided a novel optional method for the preparation of anamarine and its analogues.

4. Experimental

4.1. General

Unless otherwise indicated, all chemicals and solvents were used as received from commercial sources or purified by standard procedures. Optical rotations were recorded on a Jasco P-1030 polarimeter. IR Spectra were scanned with a Bio-Rad FTS185 spectrophotometer. ¹H- and ¹³C NMR spectra were obtained using a Bruker AM300 and AM400 spectrometer, respectively and ¹⁹F NMR spectra were recorded on a Bruker AM300 spectrometer (CFCl₃ as external standard and low field is positive. Chemical shifts (δ) in ppm, coupling constants (*J*) in Hz). LRMS were measured on Agilent system mass spectrometer and HRMS on an APEXIII (7.0 T) FTMS or waters mass spectrometer, respectively. Elemental analyses were taken on a Vario EL III elementary analysis instrument.

4.2. (1S)-1-(tert-Butyldimethylsilyloxy)-1-((4S,5R)-5-((R)-2,2dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyl-1,3-dioxolan-4yl)propan-2-ol (12)

To a solution of compound **11** (9.60 g, 26.7 mmol) in Et₂O (100 mL) at -78 °C was added MeMgBr (17.8 mL, 3 M solution in ether) dropwise. After stirring for 1 h, the reaction was quenched with saturated aqueous NH₄Cl and was extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄. Removal of all the solvent in vacuo resulted in a residue, which was purified by silica gel chromatography (petroleum ether:ethyl acetate = 4:1) to give compound **12** (8.85 g, 85% yield) as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 4.14 (m, 2H), 4.02 (m, 2H), 3.90 (m, 2H), 3.71 (m, 0.6H), 3.60 (m, 0.4H), 2.29 (br s, 1H), 1.41 (m, 6H), 1.35 (m, 6H), 1.24 (m, 3H), 0.94 (s, 9H), 0.13 (m, 6H); IR (thin film) ν_{max} 3492, 2932, 1474, 1254, 1070, 838 cm⁻¹; MS (ESI) *m/z* 391 (M+H)⁺, 413 (M+Na)⁺; Anal. Calcd. for C₁₉H₃₈O₆Si: C, 58.43; H, 9.81. Found: C, 58.53; H, 9.65.

4.3. (*R*)-4-((4*R*,5*S*)-5-((1*R*)-1,2-bis(tert-Butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2dimethyl-1,3-dioxolane (13)

To a solution of compound **12** (6.50 g, 16.7 mmol) in CH_2CI_2 (100 mL) was added 2,6-lutidine (4.3 mL, 45.0 mmol) followed by TBSOTF (6.5 mL, 33.0 mmol) dropwise at -10 °C. The reaction mixture was stirred at -10 °C for 0.5 h, then warmed to room temperature and stirred overnight. The reaction mixture was quenched with saturated aqueous NaHCO₃ and was extracted with CH_2CI_2 . The combined organic extracts were washed with 1 M HCl and brine, dried over anhydrous Na₂SO₄. Removal of all the solvent in vacuo gave a residue, which was purified by silica gel

chromatography (petroleum ether:ethyl acetate = 20:1) to afford compound **13** (7.74 g, 92% yield) as a clear oil: ¹H NMR (300 MHz, CDCl₃) δ 4.22–4.02 (m, 3H), 3.99–3.74 (m, 3H), 3.73 (dd, *J* = 4.5 Hz, 1.2 Hz, 0.4H), 3.69 (t, *J* = 3.9 Hz, 0.6H), 1.37 (m, 6H), 1.33 (m, 6H), 1.19 (t, *J* = 6.6 Hz, 3H), 0.91 (m, 18H), 0.09 (m, 12H); IR (thin film) ν_{max} 2933, 1473, 1255, 835 cm⁻¹; MS (ESI) *m*/*z* 505 (M+H)⁺; Anal. Calcd. for C₂₅H₅₂O₆Si₂: C, 59.48; H, 10.38. Found: C, 59.64; H, 10.39.

4.4. (E)-Ethyl 3-((4R,5S)-5-((1R)-1,2-bis(tertbutyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)acrylate (15)

To a solution of H_5IO_6 (4.40 g, 19.3 mmol) in Et₂O (80 mL) was added a solution of compound **13** (6.50 g, 12.9 mmol) in Et₂O (40 mL) dropwise at room temperature. After stirring for 20 h the reaction mixture was filtered through Celite and the filter cake was washed with Et₂O. The filtrate was added H_2O (50 mL) and the organic phase was separated. The aqueous layer was extracted with Et₂O and the combined organic extracts were washed with H_2O and brine, dried over anhydrous Na₂SO₄. Removal of all the solvent in vacuo gave a residue, which was used without further purification.

To a solution of (EtO)₂P(O)CH₂CO₂Et (4.33 g, 19.4 mmol) in THF (80 mL) was added NaH (774 mg, 60% in oil, 19.4 mmol) at 0 °C. The reaction mixture was stirred for 30 min, then a solution of the above residue in THF (30 mL) was added dropwise. After stirring for 1 h, the reaction was quenched with saturated aqueous NH₄Cl and was extracted with Et₂O. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated. After filtration and removal of all the solvent, the residue was purified by silica gel chromatography (petroleum ether: ethyl acetate = 100:1) to give compound **15** (4.53 g, 70% yield two steps) as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 7.14 (dd, J = 15.6 Hz, 4.5 Hz, 0.3H), 6.88 (dd, J = 15.6 Hz, 5.4 Hz, 0.7H), 6.13 (d, J = 15.6 Hz, 1H), 4.51 (m, 1H), 4.20 (m, 2H), 3.88 (m, 2H), 3.62 (t, J = 3.9 Hz, 0.7H), 3.58 (t, J = 4.8 Hz, 0.3H), 1.44 (s, 3H), 1.39 (s, 3H), 1.28 (m, 3H), 1.17 (d, J = 6.0 Hz, 3H), 0.91 (m, 18H), 0.09 (m, 12H); IR (thin film) v_{max} 2933, 1728, 1662, 1473, 1257, 1104, 836 cm⁻¹; MS (ESI) *m*/*z* 525 (M+Na)⁺, 541 (M+K)⁺; Anal. Calcd. for C₂₅H₅₀O₆Si₂: C, 59.72; H, 10.02. Found: C, 59.49; H, 10.24.

4.5. (*E*)-3-((4*R*,5*S*)-5-((1*R*,2*S*)-1,2-*b*is(tert-Butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol (16) and (*E*)-3-((4*R*,5*S*)-5-((1*R*,2*R*)-1,2-*b*is(tertbutyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol (17)

To a solution of **15** (4.20 g, 8.4 mmol) in CH₂Cl₂ (80 mL) at 0 °C was added DIBAL-H (12.5 mL, 1 M solution in toluene, 12.5 mmol) dropwise. After stirring for 1 h, the reaction was guenched with saturated aqueous Rochelle's salt. Warmed up to room temperature, the mixture was stirred for 3 h. The aqueous phase was extracted with CH₂Cl₂. The organic phase was dried over anhydrous Na₂SO₄. After filtration and removal of all the solvent in vacuo, the residue was purified by silica gel chromatography (petroleum ether:ethyl acetate = 20:1) to afford compound 16 (2.39 g, 62% yield) and 17 (1.16 g, 30% yield). Compound 16: clear oil; $[\alpha]_{D}^{27}$ = +13.6° (c 1.75, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.98 (dt, J = 15.6 Hz, 5.4 Hz, 1H), 5.70 (dd, J = 15.3 Hz, 7.5 Hz, 1H), 4.30 (t, J = 8.4 Hz, 1H), 4.17 (d, J = 4.8 Hz, 2H), 3.82 (m, 1H), 3.75 (dd, J = 9.0 Hz, 3.6 Hz, 1H), 3.58 (t, J = 3.6 Hz, 1H), 1.41 (s, 3H), 1.39 (s, 3H), 1.12 (d, J = 6.3 Hz, 3H), 0.93 (s, 9H), 0.88 (s, 9H), 0.12 (s, 3H), $0.09 (s, 3H), 0.05 (s, 6H); {}^{13}C NMR (100 MHz, CDCl_3) \delta 134.6, 128.1,$ 108.6, 81.7, 77.5, 76.7, 69.7, 62.5, 27.0, 26.0, 25.9, 18.8, 18.5, 18.1, -3.9, -4.3, -4.4, -4.8; IR (thin film) ν_{max} 3420, 2931, 1473, 1254, 1101, 835 cm⁻¹; MS (ESI) m/z 483 (M+Na)⁺; HRMS Calcd. for C₂₃H₄₈O₅Si₂Na: 483.2933; found: 483.2939. Compound **17**: clear oil; $[\alpha]_D^{25} = +24.4^{\circ}$ (*c* 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.97 (dt, *J* = 15.3 Hz, 5.4 Hz, 1H), 5.79 (dd, *J* = 15.3 Hz, 6.9 Hz, 1H), 4.37 (t, *J* = 7.8 Hz, 1H), 4.16 (d, *J* = 5.1 Hz, 2H), 3.92 (dd, *J* = 9.0 Hz, 3.6 Hz, 1H), 3.83 (m, 1H), 3.50 (t, *J* = 3.6 Hz, 1H), 1.41 (s, 6H), 1.17 (d, *J* = 6.3 Hz, 3H), 0.91 (s, 9H), 0.87 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 133.3, 129.2, 108.6, 79.7, 77.5, 73.8, 70.6, 62.9, 27.1, 27.0, 25.8, 18.1, -4.4, -4.9; IR (thin film) ν_{max} 3413, 2858, 1473, 1254, 1102, 835 cm⁻¹; MS (ESI) *m/z* 483 (M+Na)⁺; HRMS Calcd. for C₂₃H₄₈O₅Si₂Na: 483.2933; found: 483.2937.

4.6. (S,E)-1-((4R,5S)-5-((1R,2S)-1,2-bis(tert-

Butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-7-(tert-butyldimethylsilyloxy)-4,4-difluorohept-1-en-5-yn-3-ol (**20**) and (R,E)-1-((4R,5S)-5-((1R,2S)-1,2-bis(tertbutyldimethylaiblau))-5-((1R,2S)-1,2-bis(tertbutyldimethylaiblau))-5-((1R,2S)-1,2-bis(tertbutyldimethylaiblau))-5-((1R,2S)-1,2-bis(tertbutyldimethylaiblau))-5-((1R,2S)-1,2-bis(tertbutyldimethylaiblau))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)-5-((1R,2S)-1,2-bis(tert-butyldimethyla))-5-((1R,2S)

butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-7-(tert-butyldimethylsilyloxy)-4,4-difluorohept-1-en-5-yn-3-ol (21)

To a solution of **16** (0.74 g, 1.61 mmol) in CH_2CI_2 (20 mL) was added Dess-Martin reagent (1.02 g, 2.41 mmol). After stirring for 1 h, the reaction mixture was quenched with saturated aqueous $Na_2S_2O_3$ and was extracted with CH_2CI_2 . The combined organic extracts were washed with brine, dried over anhydrous Na_2SO_4 . After filtration and removal of all the solvent, the residue was used for next step without further purification.

To a stirred suspension of the above residue and compound 19 (0.48 g, 1.39 mmol) in DMF-H₂O (20 mL, 2:1, v/v) was added indium power (0.20 g, 1.77 mmol) at room temperature. After stirring for 5 h, the reaction mixture was guenched with 1 M HCl. The aqueous phase was extracted with EtOAc, and the organic phase was washed with water and brine, dried over anhydrous Na₂SO₄. After filtration and removal of all the solvent, the residue was purified by silica gel chromatography (petroleum ether:ethyl acetate = 20:1) to afford compound **20** (0.52 g, 48% yield) and **21** (0.33 g, 30% yield). Compound **20**: yellow oil; $[\alpha]_D^{24} = +1.2^{\circ}$ (c 0.53, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.94 (m, 2H), 4.36 (m, 4H), 3.78 (m, 2H), 3.59 (t, J = 3.9 Hz, 1H), 2.02 (br s, 1H), 1.42 (s, 3H), 1.38 (s, 3H), 1.12 (d, J = 6.0 Hz, 3H), 0.90 (m, 27H), 0.09 (m, 18H); ¹⁹F NMR $(282 \text{ MHz}, \text{ CDCl}_3) \delta -95.1 \text{ (d, } J = 286.1 \text{ Hz}, 1\text{ F}), -96.6 \text{ (d,}$ J = 272.4 Hz, 1F; IR (thin film) v_{max} 3460, 2932, 2230, 1473, 1256, 1104, 836 cm⁻¹; MS (ESI) m/z 701 (M+Na)⁺, 717 (M+K)⁺; Anal. Calcd. for C₃₃H₆₄F₂O₆Si₃: C, 58.36; H, 9.50. Found: C, 58.68; H, 9.24. Compound **21**: yellow oil; $[\alpha]_{D}^{25} = +25.2^{\circ} (c \ 2.00, CHCl_{3}); {}^{1}H$ NMR (300 MHz, CDCl₃) δ 5.90 (m, 2H), 4.36 (m, 4H), 3.81 (m, 1H), 3.75 (dd, J = 8.4 Hz, 4.5 Hz, 1H), 3.60 (t, J = 3.6 Hz, 1H), 1.80 (br s, 1H), 1.42 (s, 3H), 1.38 (s, 3H), 1.12 (d, J = 6.3 Hz, 3H), 0.91 (m, 27H), 0.09 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 134.0, 127.7, 120.9 (t, J = 237.3 Hz), 109.0, 88.2 (t, J = 6.4 Hz), 81.8, 77.0, 76.7, 75.5 (t, *J* = 38.9 Hz), 74.4 (t, *J* = 29.8 Hz), 69.8, 51.2, 27.0, 26.9, 26.1, 25.9, 25.7, 18.7, 18.5, 18.2, 18.1, -3.9, -4.4, -4.5, -4.8, -5.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -94.5 (d, J = 274.4 Hz, 1F), -96.6 (d, J = 280.7 Hz, 1F); IR (thin film) v_{max} 3460, 2932, 2258, 1650, 1473, 1257, 1108, 836 cm⁻¹; MS (ESI) m/z 696 (M+NH₄)⁺; HRMS Calcd. for C₃₃H₆₄F₂O₆Si₃Na: 701.3871; found: 701.3838.

4.7. (S,1E,5Z)-1-((4R,5S)-5-((1R,2S)-1,2-bis(tert-Butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-7-(tert-butyldimethylsilyloxy)-4,4-difluorohepta-1,5-dien-3-ol (22)

To a mixture of Pd–BaSO₄ (28 mg, 42 mg/mmol) in MeOH (20 mL) was added a solution of quinoline (28 mg, 42 mg/mmol) in MeOH (2 mL) at 0 °C. Warming up to room temperature, the suspension mixture was stirred for 15 min before a solution of compound **20** (450 mg, 0.66 mmol) in DMF (10 mL) was added. After the mixture was stirred for 3.5 h under hydrogen atmosphere

(1 atm) at 35 °C, ¹⁹F NMR indicated the absence of starting material **20**. The reaction mixture was filtered and concentrated. The residue was purified by silica gel chromatography (petroleum ether:ethyl acetate = 20:1) to afford compound **22** (449 mg, 96% yield) as a yellow oil: $[\alpha]_D^{24} = +4.8^{\circ}$ (*c* 0.60, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.00 (m, 1H), 5.90 (m, 2H), 5.47 (m, 1H), 4.44 (m, 2H), 4.33 (m, 2H), 3.80 (m, 1H), 3.75 (dd, *J* = 8.1 Hz, 3.9 Hz, 1H), 3.58 (t, *J* = 3.6 Hz, 1H), 2.10 (br s, 1H) 1.42 (s, 3H), 1.38 (s, 3H), 1.12 (d, *J* = 6.6 Hz, 3H), 0.90 (m, 27H), 0.07 (m, 18H); ¹⁹F NMR (282 MHz, CDCl₃) δ -101.6 (d, *J* = 260.9 Hz, 1F), -104.4 (dt, *J* = 261.5 Hz, 13.2 Hz, 1F); IR (thin film) ν_{max} 3460, 2932, 1473, 1256, 1104, 836 cm⁻¹; MS (ESI) *m*/*z* 703 (M+Na)⁺, 719 (M+K)⁺; Anal. Calcd. for C₃₃H₆₆F₂O₆Si₃: C, 58.19; H, 9.77. Found: C, 57.95; H, 9.72.

4.8. (R,1E,5Z)-1-((4R,5S)-5-((1R,2R)-1,2-bis(tert-Butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-7-(tert-butyldimethylsilyloxy)-4,4-difluorohepta-1,5-dien-3-ol (23)

Compound **23** was prepared from compound **21** (300 mg, 0.44 mmol) in 93% yield using the same conditions as described for compound **22**. Yellow oil; $[\alpha]_D^{24} = +20.0^{\circ}$ (*c* 1.50, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.99 (m, 1H), 5.86 (m, 2H), 5.48 (m, 1H), 4.44 (m, 2H), 4.30 (m, 2H), 3.80 (m, 1H), 3.74 (dd, *J* = 8.1 Hz, 3.9 Hz, 1H), 3.58 (t, *J* = 3.3 Hz, 1H), 2.29 (br s, 1H) 1.42 (s, 3H), 1.38 (s, 3H), 1.12 (d, *J* = 6.6 Hz, 3H), 0.90 (m, 27H), 0.08 (m, 18H); ¹⁹F NMR (282 MHz, CDCl₃) δ -101.6 (d, *J* = 274.1 Hz, 1F), -104.9 (dt, *J* = 259.7 Hz, 12.6 Hz, 1F); IR (thin film) ν_{max} 3480, 2932, 1650, 1473, 1256, 1104, 836 cm⁻¹; MS (ESI) *m/z* 703 (M+Na)⁺, 719 (M+K)⁺; Anal. Calcd. for C₃₃H₆₆F₂O₆Si₃: C, 58.19; H, 9.77. Found: C, 58.53; H, 9.54.

4.9. (S,2Z,6E)-7-((4R,5S)-5-((1R,2R)-1,2-bis(tert-

Butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-4,4difluorohepta-2,6-diene-1,5-diol (24)

To a solution of 22 (400 mg, 0.59 mmol) in MeOH (10 mL) was added 10-CSA (9 mg, 0.029 mmol). After stirring for 1 h, the reaction mixture was quenched with saturated NaHCO₃. The aqueous phase was extracted with EtOAc, and the organic phase was washed with brine, dried over anhydrous Na₂SO₄. After filtration and removal of all the solvent in vacuo, the residue was purified by silica gel chromatography (petroleum ether:ethyl acetate = 4:1) to give compound 24 (267 mg, 80% yield) as a clear oil: $[\alpha]_D^{23} = +7.3^{\circ}$ (c 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.03 (m, 1H), 5.88 (m, 2H), 5.51 (m, 1H), 4.36 (m, 4H), 3.79 (m, 2H), 3.57 (t, J = 3.3 Hz, 1H), 2.62 (br s, 2H), 1.42 (s, 3H), 1.39 (s, 3H), 1.13 (d, J = 6.6 Hz, 3H), 0.92 (s, 9H), 0.88 (s, 9H), 0.12 (s, 3H), 0.08 (s, 3H), 0.05 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0 (t, J = 4.6 Hz), 131.9, 129.1, 121.7 (t, J = 26.3 Hz), 120.4 (dd, J = 244.8 Hz, 243.4 Hz), 109.0, 81.8, 77.0, 76.6, 73.0 (t, J = 30.1 Hz), 69.8, 58.6, 27.0, 26.8, 26.1, 25.9, 18.9, 18.5, 18.1, -3.9, -4.4, -4.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -101.1 (dt, J = 270.1 Hz, 13.5 Hz, 1F), -102.5 (dt, J = 258.0 Hz, 12.9 Hz, 1F); IR (thin film) v_{max} 3450, 2956, 1473, 1255, 1109, 836 cm⁻¹; MS (ESI) *m/z* 611 (M+COOH)⁻; HRMS Calcd. for C₂₈H₅₃F₂O₈Si₂: 611.3253; found: 611.3262.

4.10. (R,2Z,6E)-7-((4R,5S)-5-((1R,2R)-1,2-bis(tert-Butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-4,4difluorohepta-2,6-diene-1,5-diol (25)

Compound **25** was prepared from compound **23** (250 mg, 0.37 mmol) in 85% yield using the same conditions as described for compound **24**. Clear oil; $[\alpha]_D{}^{26} = +26.2^{\circ}$ (*c* 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.05 (m, 1H), 5.88 (m, 2H), 5.52 (m, 1H), 4.35 (m, 4H), 3.79 (m, 2H), 3.58 (t, *J* = 4.5 Hz, 1H), 2.05 (br s, 2H), 1.42 (s, 3H), 1.39 (s, 3H), 1.13 (d, *J* = 5.7 Hz, 3H), 0.92 (s, 9H), 0.88 (s, 9H), 0.12 (s, 3H), 0.09 (s, 3H), 0.06 (s, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ

-99.5 (dt, *J* = 259.7 Hz, 9.8 Hz, 1F), -103.1 (d, *J* = 260.3 Hz, 1F); IR (thin film) ν_{max} 3450, 2933, 1469, 1379, 1107, 834 cm⁻¹; MS (ESI) *m*/*z* 611 (M+COOH)⁻; Anal. Calcd. for C₂₇H₅₂F₂O₆Si₂: C, 57.21; H, 9.25. Found: C, 57.42; H, 9.25.

4.11. (S)-6-((E)-2-((4R,5S)-5-((1R,2R)-1,2-bis(tert-Butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4yl)vinyl)-5,5-difluoro-5,6-dihydropyran-2-one (26)

To a solution of 24 (220 mg, 0.39 mmol) in CH₂Cl₂ (5 mL) was added BAIB (520 mg, 1.17 mmol) and TEMPO (12 mg, 20 mmol%) at room temperature. After stirring for 3 h, the reaction mixture was quenched with saturated aqueous Na₂S₂O₃ and was extracted with CH₂Cl₂. The combined organic extracts were washed with saturated NaHCO₃ and brine; dried over anhydrous Na₂SO₄. After filtration and removal of all the solvent in vacuo, the residue was purified by silica gel chromatography (petroleum ether:ethyl acetate = 10:1) to afford compound 26 (188 mg, 86% yield) as a clear oil: $[\alpha]_D^{24} = +41.8^{\circ} (c \, 1.20, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} (300 \text{ MHz}, \text{CDCl}_3)$ δ 6.82 (m, 1H), 6.32 (d, J = 9.9 Hz, 1H), 6.08 (dd, J = 15.3 Hz, 6.0 Hz, 1H), 5.94 (dd, J = 15.6 Hz, 5.4 Hz, 1H), 5.06 (dt, J = 15.6 Hz, 6.6 Hz, 1H), 4.40 (t, J = 6.6 Hz, 1H), 3.80 (m, 2H), 3.60 (t, J = 3.3 Hz, 1H), 1.43 (s, 3H), 1.39 (s, 3H), 1.13 (d, J = 6.0 Hz, 3H), 0.92 (s, 9H), 0.88 (s, 9H), 0.13 (s, 3H), 0.08 (s, 3H), 0.05 (s, 6H); ¹³C NMR (100 MHz, $CDCl_3$) δ 159.9 (t, J = 2.0 Hz), 137.6 (dd, J = 31.3 Hz, 26.8 Hz), 135.8, 126.6 (dd, J = 9.8 Hz, 8.3 Hz), 121.7 (dd, J = 3.2 Hz, 1.0 Hz), 111.8 (dd, J = 243.9 Hz, 238.1 Hz), 109.2, 81.7, 78.7 (dd, J = 32.7 Hz, 28.6 Hz), 76.6, 76.5, 69.8, 27.0, 26.8, 26.0, 25.9, 19.0, 18.5, 18.1, -3.9, -4.4, -4.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -107.1 (dd, / = 293.9 Hz, 15.2 Hz, 1F), -108.7 (dd, / = 293.3 Hz, 8.9 Hz, 1F); IR (thin film) v_{max} 2932, 1754, 1615, 1473, 1383, 1258, 1106. 835 cm⁻¹; MS (EI) *m*/*z* (%) 505 (2), 303 (21), 159 (54), 131 (73), 73 (100); HRMS Calcd. for C₂₃H₃₉F₂O₆Si₂: 505.2253; found: 505.2249.

4.12. (*R*)-6-((*E*)-2-((*4R*,5*S*)-5-((*1R*,2*R*)-1,2-*bis*(tert-Butyldimethylsilyloxy)propyl)-2,2-dimethyl-1,3-dioxolan-4yl)vinyl)-5,5-difluoro-5,6-dihydropyran-2-one (**27**)

Compound 27 was prepared from compound 25 (200 mg, 0.35 mmol) in 85% yield using the same conditions as described for compound **26**. White solid, mp 92–94 °C; $[\alpha]_D^{25} = -3.7^\circ$ (*c* 1.20, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.82 (m, 1H), 6.32 (d, J = 10.5 Hz, 1H), 6.04 (dd, J = 15.6 Hz, 6.0 Hz, 1H), 5.93 (dd, J = 15.0 Hz, 6.0 Hz, 1H), 5.02 (m, 1H), 4.40 (t, J = 6.6 Hz, 1H), 3.82 (m, 1H), 3.77 (dd, J = 8.4 Hz, 3.9 Hz, 1H), 3.61 (t, J = 3.3 Hz, 1H), 1.43 (s, 3H), 1.39 (s, 3H), 1.13 (d, J = 6.3 Hz, 3H), 0.92 (s, 9H), 0.88 (s, 9H), 0.13 (s, 3H), 0.09 (s, 3H), 0.06 (s, 6H); 13 C NMR (100 MHz, CDCl₃) δ 159.9, 137.6 (dd, J = 31.2 Hz, 26.5 Hz), 136.5, 126.5 (dd, J = 9.7 Hz, 8.3 Hz), 121.6 (dd, J = 3.5 Hz, 0.9 Hz), 111.7 (dd, J = 244.1 Hz, 237.5 Hz), 109.2, 81.8, 79.1 (dd, J = 32.7 Hz, 28.6 Hz), 76.6, 76.5, 69.8, 27.0, 26.8, 26.0, 25.9, 18.9, 18.4, 18.1, -3.9, -4.5, -4.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -107.1 (dd, J = 293.9 Hz, 15.5 Hz, 1F), -108.7 (dd, J = 293.6 Hz, 9.8 Hz, 1F); IR (thin film) ν_{max} 2932, 1754, 1650, 1473, 1257, 1107, 835 cm⁻¹; MS (EI) *m/z* (%) 547 (2), 505 (4), 303 (32), 73 (100); HRMS Calcd. for C₂₃H₃₉F₂O₆Si₂: 505.2253; found: 505.2260.

4.13. (6S)-5,5-Difluoro-6-[(1E,3R,4S,5S,6S)-3,4,5,6-

tetrakis(*acetyloxy*)-1-*hepten*-1-*yl*]-5,6-*dihydro*-2H-Pyran-2-one (**9**)

To a solution of **26** (80 mg, 0.14 mmol) in THF (3.5 mL) was added 6 M HCl (3.5 mL) at room temperature. After TLC demonstrated that starting material was completely consumed, the reaction was concentrated to give a residue, which was used without further purification.

To a solution of above residue in CH₂Cl₂ (5 mL) was added dropwise pyridine (0.15 mL), DMAP (3 mg) followed by Ac₂O (0.1 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature overnight. The reaction mixture was guenched with saturated aqueous NaHCO₃ and was extracted with CH₂Cl₂. The combined organic extracts were washed with 1 M HCl and brine, dried over anhydrous Na₂SO₄. After filtration and removal of all the solvent, the residue was purified by silica gel chromatography (petroleum ether:ethyl acetate = 1:1) to afford compound **9** (50 mg, 78% yield) as a clear oil: $[\alpha]_D^{24}$ = +0.3° (*c* 1.25, CHCl₃); ¹H NMR (300 MHz, $CDCl_3$) δ 6.83 (m, 1H), 6.32 (d, J = 10.2 Hz, 1H), 6.01 (dd, J = 15.9 Hz, 5.4 Hz, 1H), 5.87 (dd, J = 15.9 Hz, 5.1 Hz, 1H), 5.48 (t, J = 5.7 Hz, 1H), 5.30 (dd, J = 6.0 Hz, 4.8 Hz, 1H), 5.23 (dd, *J* = 5.7 Hz, 4.5 Hz, 1H), 5.04 (ddd, *J* = 16.8 Hz, 8.1 Hz, 5.7 Hz, 1H), 4.91 (dt, J = 12.6 Hz, 6.0 Hz, 1H), 2.15 (s, 3H), 2.12 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H), 1.21 (d, J = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 169.8, 169.6, 159.8, 137.5 (t, J = 28.9 Hz), 131.5, 126.5 (t, J = 0.9 Hz), 123.7, 111.8 (t, J = 240.1 Hz), 78.6 (t, J = 30.9 Hz), 71.4, 70.9, 70.1, 67.4, 21.0, 20.8, 20.7, 20.5, 15.4; ¹⁹F NMR (282 MHz, CDCl₃) δ –105.8 to –109.1 (m, 2F); IR (thin film) ν_{max} 2929, 1753, 1648, 1459, 1375, 1215, 1068 cm⁻¹; MS (ESI) m/z 480 (M+NH₄)⁺, 485 (M+Na)⁺; HRMS Calcd. for C₂₀H₂₄F₂O₁₀Na: 485.1230; found: 485.1243.

4.14. (6R)-5,5-Difluoro-6-[(1E,3R,4S,5S,6S)-3,4,5,6tetrakis(acetyloxy)-1-hepten-1-yl]-5,6-dihydro-2H-Pyran-2-one (10)

Compound 10 (36 mg, 87%) was prepared from compound 27 (50 mg, 0.089 mmol) using the same conditions as described for compound **9**. Clear oil: $[\alpha]_D^{24} = -54.6^{\circ}$ (*c* 0.79, CHCl₃); ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 6.83 \text{ (m, 1H)}, 6.32 \text{ (d, } I = 9.6 \text{ Hz}, 1\text{H}), 6.04 \text{ (dd, })$ *J* = 16.5 Hz, 6.0 Hz, 1H), 5.85 (dd, *J* = 15.6 Hz, 5.4 Hz, 1H), 5.47 (t, *J* = 6.3 Hz, 1H), 5.30 (dd, *J* = 6.3 Hz, 3.9 Hz, 1H), 5.23 (dd, *J* = 6.0 Hz, 4.5 Hz, 1H), 5.04 (dt, *J* = 16.8 Hz, 6.0 Hz, 1H), 4.92 (dt, *J* = 12.6 Hz, 6.0 Hz, 1H), 2.13 (s, 6H), 2.07 (s, 3H), 2.03 (s, 3H), 1.21 (d, J = 6.6 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ 170.0, 169.9, 169.8, 169.6, 159.7, 137.6 (t, J = 25.9 Hz), 131.5, 126.5 (dd, J = 11.5 Hz, 8.2 Hz), 123.5 (t, *J* = 3.0 Hz), 111.7 (dd, *J* = 244.3 Hz, 237.3 Hz), 78.4 (dd, *J* = 32.9 Hz, 28.1 Hz), 71.5, 71.0, 70.2, 67.3, 21.0, 20.8, 20.5, 15.5; ¹⁹F NMR $(282 \text{ MHz}, \text{CDCl}_3) \delta -107.2 \text{ (dd}, J = 289.1 \text{ Hz}, 16.9 \text{ Hz}, 1\text{F}), -109.4$ (dt, J = 289.1 Hz, 6.2 Hz, 1F); IR (thin film) v_{max} 2929, 1758, 1640, 1433, 1374, 1216, 1067 cm⁻¹; MS (ESI) *m/z* 485 (M+Na)⁺; HRMS Calcd. for C₂₀H₂₄F₂O₁₀Na: 485.1230; found: 485.1226.

Acknowledgments

We thank the National Natural Science Foundation of China (20832008) and the Shanghai Municipal Scientific Committee for funding this work.

References

- A. Alemany, C. Marquez, C. Pascual, S. Valverde, A. Perales, J. Fayos, M. Martinez-Ripoll, Tetrahedron Lett. 20 (1979) 3579–3582.
- [2] A. Alemany, C. Marquez, C. Pascual, S. Valverde, M. Martínez-Ripoll, J. Fayos, A. Perales, Tetrahedron Lett. 20 (1979) 3583–3586.
- [3] S.A. Achmad, T. Høyer, A. Kjær, L. Makmur, R. Norrestam, Acta Chem. Scand. 41B (1987) 599–609.
- [4] M.T.D. Coleman, R.B. English, D.E.A. Rivett, Phytochemistry 26 (1987) 1497–1499.
 [5] R. Pereda-Miranda, L. Hernandez, M.J. Villavicencio, M. Novelo, P. Ibarra, H. Chai,
- J.M. Pezzuto, J. Nat. Prod. 56 (1993) 583–593. [6] R. Pereda-Miranda, R. Fragoso-Serrano, C.M. Cerda-García-Rojas, Tetrahedron 57
- [0] K. Fereda-Mitanda, K. Fragoso-Serrano, C.W. Cerua-Garcia-Kojas, retraneuron 37 (2001) 47–53.
- [7] K. Lorenz, F.W. Lichtenthaler, Tetrahedron Lett. 28 (1987) 6437–6440.
 [8] S. Valverde, A. Herradon, B. Herradon, R.M. Babanal, M. Marrtin-Lomas, Tetrahedron 43 (1987) 3499–3504.
- [9] F.W. Lichtenthaler, K. Lorenz, W.-y. Ma, Tetrahedron Lett. 28 (1987) 47–50.
- [10] M. Abbas, PhD Thesis, Tübingen University, 2002.
- [11] E. Falomir, J. Murga, P. Ruiz, M. Carda, J.A. Marco, J. Org. Chem. 68 (2003) 5672– 5676.

- [12] S. Diaz-Oltra, J. Murga, E. Falomir, M. Carda, J.A. Marco, Tetrahedron 40 (2004) 2979–2985.
- [13] D. Gao, G.A. O'Doherty, Org. Lett. 7 (2005) 1069-1072.
- [14] D. Gao, G.A. O'Doherty, J. Org. Chem. 70 (2005) 9932-9939.
- [15] P. Kumar, S.V. Naidu, J. Org. Chem. 71 (2006) 3935-3941.
- [16] A. de Fatima, L.K. Kohn, M.A. Antonio, J.E. de Carvalho, R.A. Pilli, Bioorg. Med. Chem. 14 (2006) 622–631.
- [17] S.B. Buck, C. Hardouin, S. Ichikawa, D.R. Soenen, C.M. Gauss, I. Hwang, M.R. Swingle, K.M. Bonness, R.E. Honkanen, D.L. Boger, J. Am. Chem. Soc. 125 (2003) 15694–15695.
- [18] R.D. Chambers, Fluorine in Organic Chemistry, Wiley, New York, 1973.
- [19] R.E. Banks, B.E. Smart, J.C. Tatlow, Organofluorine Chemistry: Principles and
- Commercial Applications, Plenum Press, New York, 1994.
 T.M. Hansen, G.J. Florence, P. Lugo-Mas, J. Chen, J.N. Abrams, C.J. Forsyth, Tetrahedron Lett. 44 (2003) 57–59.

- [21] Z.-W. You, Z.-X. Jiang, B.-L. Wang, F.-L. Qing, J. Org. Chem. 71 (2006) 7261-7267.
- [22] J. Xu, X. Zhang, X.-L. Qiu, F.-L. Qing, Synthesis (2009) 602-608.
- [23] S.-G. Hu, T.-S. Hu, Y.-L. Wu, Org. Biomol. Chem. 2 (2004) 2305-2310.
- [24] D.D. Long, M.D. Smith, A. Martin, J.R. Wheatley, D.G. Watkin, M. Müller, G.W.J. Fleet, J. Chem. Soc., Perkin Trans. 1 (2002) 1982–1998.
- [25] X. Li, M. Tanasova, C. Vasileiou, B. Borhan, J. Am. Chem. Soc. 130 (2008) 1885– 1893.
- [26] W.-L. Wu, Y.-L. Wu, J. Org. Chem 58 (1993) 3586–3588.
- [27] Z.G. Wang, G.B. Hammond, J. Org. Chem. 65 (2000) 6547-6552.
- [28] Y. Hanzawa, K. Inazawa, A. Kon, H. Aoki, Y. Kobayashi, Tetrahedron Lett. 28 (1987) 659–662.
- [29] H.L. Sham, D.A. Betebenner, N.E. Wideburg, D.J. Kempf, J.J. Plattner, D.W. Norbeck, J. Fluorine Chem. 73 (1995) 221–224.
- [30] Y. Nakamura, M. Okada, A. Sato, H. Horikawa, M. Koura, A. Saito, T. Taguchi, Tetrahedron 61 (2005) 5741–5753.